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Carbon nanotubes (CNTs) are allotropes of carbon with a cylindrical nanostructure. Due to their low production cost and
potentially high demand, the large-scale production of CNTs is urgently needed and will be highly profitable. However,
quality control will be a great challenge to a large-scale production due to the delicate nature of the production process.
Among the problems involved in the quality control of CNT array production, height variation is one of the primary
concerns. The objective of this study is to model the height along both the spatial and temporal dimensions, so that the
height variations can be controlled during the production process, thus improving the quality and stability of CNT arrays.
Specifically, the height variation of the CNT arrays is decomposed into macro-scale and micro-scale variations. The
macro-scale variation is modelled by state-space and regression models, and the micro-scale variation is modelled as a
spatial process. The models successfully capture both the macro-trends and the micro-patterns. A practical case study
shows the effectiveness of the proposed models in terms of goodness of fit and prediction accuracy, and the distinction
of the models is summarised to aid in choosing a model to apply to other spatial–temporal data modelling problems.

Keywords: quality control; statistical methods; semiconductor manufacturing; spatial representation; spatial–temporal
model

1. Introduction

Carbon Nanotube (CNT) arrays are a type of nanostructure material that grows vertically on silicon wafer substrates
with a dense alignment. Due to the van der Waals force among the molecules, the arrays can be drawn into continuous
yarns or films. With their extraordinary properties, such as their light weight, good electrical and thermal conductivity,
and high mechanical strength, the applications of CNT yarns and films are countless, including flexible loudspeakers,
touch screens, incandescent displays, etc. (Jiang et al. 2011). Scaling up the CNT production while maintaining stable
quality has great business potential, and thus has generated increasing interest in recent years. The nanotechnology is
gradually extending from the laboratory and entering a massive production stage. There is a great need for techniques to
help improve quality, productivity and reduce cost. We intend to apply statistical methods to address the needs of the
nano manufacturing process and demonstrate the effectiveness of production techniques in the new manufacturing envi-
ronment.

The quality control of CNT arrays is motivated by industrial demands of metal content, single-walled carbon purity,
diameter distribution, height of nanotubes, crystalline quality, etc. (Kumar and Ando 2010). Among others, the height of
CNT arrays is of great importance as this parameter is influential to other quality characteristics, and the uniformity of
height also affects material utility. In practice, reaction time, catalyst film thickness, temperature and vapour pressure are
the dominating factors. In the literature, researchers have focused more on engineering experiments of various reaction
ingredients and environment conditions to pursue a desirable height of CNT array. However, in a scaled-up nanomanu-
facturing scenario where real data are available, we believe a data-driven approach will be effective. The joint considera-
tion of growth mechanisms and statistical techniques can enable production engineers and quality experts to better
understand and control the height variation and thus improve quality.

To have a better understanding of the variation in height, we first introduce the production procedures of CNT arrays
briefly. Currently, chemical vapour deposition (CVD) is one of the most popular production methods for CNT produc-
tion (Kumar and Ando 2010). A schematic illustration of the CVD equipment is shown in Figure 1. First, wafer sub-
strates that have been coated with a thin catalyst film are placed into a quartz tray, and the tray is put into a tube
furnace. Second, certain chemical gas is fed into the tube furnace. The chamber is heated and thus leads to a series of
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chemical reactions; hydrogen is liberated, and carbon atoms are deposited onto the substrate and grow into the form of
nanotubes. Variations within a sample may be caused by the competition of reaction resources in neighbourhoods of
each nanotube or the diffusion of the reaction gas. In addition, the variation across samples may be caused by the
process or external factors, such as gas source or temperature.

In this study, we aim to construct a spatial–temporal model to quantitatively characterise the height variation, with
the temporal trend describing the variation among the samples and the spatial trend embodying variations within a sam-
ple. Such a model is important for many quality control applications. For instance, the model can be used to develop
control charts for process monitoring and to reduce process variation via run-to-run control.

This paper is organised as follows. Section 2 presents a review of the existing spatial–temporal models and estima-
tion methods. In Section 3, the variation is presented and analysed on both the macro- and micro-scales. In Section 4,
three spatial–temporal models are proposed, and the corresponding estimation methods are described. Section 5 presents
a case study and performance comparison results of proposed models. Finally, conclusions and practical implications are
discussed in Section 6.

2. State-of-the-art modelling of spatial–temporal variations

In recent years, spatial–temporal models have been widely applied in various fields, especially those involving remote
sensing and monitoring. For example, Smith, Kolenikov, and Cox (2003) modelled a PM2.5 network data covering three
states in the USA, and Nguyen, Cressie, and Braverman (2012) addressed the massive global aerosol measurements col-
lected by NASA. Theoretical systems of spatial models and time series models are already well developed. However,
modelling spatial and temporal data remain a topic of interest.

Almost all of the spatial–temporal models are composed of a macro-scale variation component and a micro-scale
variation component. Macro-scale variation includes a general mean, a spatial trend, a temporal trend and an interactive
trend (e.g. a site-specific temporal trend), while micro-scale variation contains the spatial autocorrelation or the
spatio-temporal autocorrelation of a process. These two components are characterised by different model formats. The
macro-scale variations are usually structured with regression and state-space models, and micro-scale variations are often
modelled as a zero-mean Gaussian process. In addition, a locally weighted regression model can also be used to interpo-
late and extrapolate spatial–temporal data. Details of such type of models are unfolded in the following.

Statistical approaches to address the spatial–temporal data focus on two paradigms (Kang, Cressie, and Shi 2010).
First, time is viewed as an additional dimension in spatial. That is, a d-dimensional spatial process with temporal
changes becomes a (d + 1)-dimensional process, and thus can be model as a usually spatial process.

The best-known geostatistics modelling technique, Kriging, is frequently modified and applied to spatial data. The
Kriging model yields estimates for a particular site by taking observations of nearby sites as predictors. Cameletti,
Ignaccolo, and Bande (2011) used a linear regression term to model the macro-scale variation. Sharples and Hutchinson
(2005) adopted an additive regression spline term in their model. In addition, a generalised linear regression model or
additive model (Hastie and Tibshirani 1990) is also flexible enough to handle such type of data. Smoothing-based meth-
ods are alternatives for modelling spatial–temporal data, although they have a disadvantage of lacking a clear model pre-
sentation. Locally weighted regression, a popular model proposed by Cleveland (1979), has been extended to
multivariate predictors in Cleveland and Devlin (1988).

The idea of the second paradigm is to address the temporal dimension using dynamic statistical models, thus as
ARIMA time-series models, state-space models, etc. In the models proposed by Cameletti, Ignaccolo, and Bande
(2011), a latent process AR(1) term was used to embody the time-variant general mean. Fasso and Cameletti (2010) and
Cressie, Shi, and Kang (2010) proposed state-space models of two levels: (1) a latent temporal process to model the
state transition along time, and then (2) a process loaded by a spatial observation matrix to obtain the output. The model
proposed by Cressie, Shi, and Kang (2010) is more widely applicable because the observation matrix can be
time-variant. The noticeable advantages of their model are the following: (1) spatial dimension reduction from the

Figure 1. Production system via the CVD method.
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number of observation sites to the number of state-vector dimensions, and (2) rapid iterations using a Kalman smoother
and filter.

Comparing the two paradigms above, dynamic statistical models are preferred to spatial models for the following
two reasons. First, dynamic statistical models can be derived from knowledge of the time-variant pattern, if known
previously, and they are readily interpreted based on how observation changes with time. Second, dynamic statistical
models allow for rapid iterations for smoothing and forecasting, which results in computation efficiency. According to
Cameletti, Ignaccolo, and Bande (2011), modelled using the same micro-scale variation component and applied to PM10

data, dynamic statistical models perform better than linear regression models in their predictability.
To model the micro-scale variation component, assumptions must be primarily built and verified. Excluding the

macro-scale trend and studying the innovations, it must first be identified whether purely spatial autocorrelation or spa-
tial–temporal autocorrelation exists, and then the assumptions for modelling the micro-scale variation can be defined. If
only the spatial autocorrelation is strong, then the data can be modelled as a purely spatial process; otherwise, the data
should be modelled as a spatial–temporal process.

For a purely spatial process, the Gaussian Markov random field (GMRF) is a powerful tool for modelling such infor-
mation. It is a random vector with finite dimensions following a multivariate Gaussian distribution and conditional inde-
pendence property. The critical part of GMRF is an inverse covariance matrix, or a precision matrix, that defines the
density of the GMRF. The precision matrix controls the influence of nearby points on the target point. There exist many
alternatives for modelling covariances: Matern, exponential, Gaussian, etc. Families of spatial covariance functions can
be found in Koehler and Owen (1996).

For a spatial–temporal process, Bilonick (1985) proposed an additive variogram as the sum of a spatial variogram and
a temporal variogram, which was proven unsatisfactory (Rouhani and Myers 1990). Rodríguez-Iturbe and Mejía (1974)
proposed a separable spatial–temporal covariance, which can be written as the product of a purely spatial covariance and
a purely temporal covariance. However, the lack of modelling space–time interaction leads to a corresponding limited
class of random processes. Cressie and Huang (1999) proposed a non-separable spatial–temporal covariance, which is a
generic approach for developing parametric models for spatial–temporal processes. Although the non-separable stationary
covariance is more widely applicable than separable covariance, the computation is much more time-consuming.

Aside from the models above, the Bayesian Hierarchical Space–Time model is another alternative to solve spatio-
temporal modelling problems (Wikle, Berliner, and Cressie 1998). The model consists of five stages: (1) measurement
error process for the observational data, (2) site-specific time series model for the state variable, (3) spatial structures
and dynamics, (4) priors of the parameters and (5) hyper-priors. In the model above, the second stage is of the most
interest, and it could be regarded as the macro-scale variation construction mentioned in this section, and the third stage
corresponds to the micro-scale variation construction.

3. Variation pattern analysis of a real example

The data used in this study are collected from a real CNT production line, including a series of 109 CNT samples. All
of the data are taken from the same CVD furnace and at the same position on the quartz tray in the furnace. To con-
struct an appropriate model for the wafers, we first introduce the sampling scheme, analyse the whole data-set and then
try to have a good understanding of the variation patterns embedded in the data.

3.1 The sampling scheme

The height values of the CNT arrays are measured at sample. As shown in Figure 2(a), the measuring device takes sam-
ples along the x-axis, and then traverses 10 mm along the y-axis to the next line and keep sampling along the x-axis
again. In this way, for each sample, the data sampling can be regarded as 19 lines along the x-axis. Figure 2(b) shows a
3-D scatterplot of a typical sample. The bow shape on the projection plane implies that a convexity variation features
within the sample. To simplify the problem, the measurement line obtained at y = 0, which is the centre one of the 19
lines, is chosen as the study object of each sample, as it captures the convexity and also the general height trend infor-
mation of the whole wafer. On each centre line, height values are measured at 17 evenly distributed points, as shown
by the dots in Figure 2(a).

3.2 Macro-scale variation pattern

Figure 3 shows the main variation pattern of the temporal trend among the samples and the spatial trend within a sam-
ple. Figure 3(a) randomly picks 5 out of the 109 samples; the plot reveals a quadric height variation trend in the spatial
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domain. Figure 3(b) shows the centre height of each line (that is, the height value at the centre point of each line). The
centre point can be regarded as the general position of each line. There is no obvious cycling pattern in the plot.
Therefore, we concluded from Figure 3 that the macro-scale height variation is mainly dominated by a quadratic spatial
variation and an empirical temporal variation.

3.3 Micro-scale variation pattern

To study the micro-scale variation, samples at three time steps are randomly selected. By regression and removing the
quadratic spatial trend from the original data, the remaining residuals are used to (1) test the significance of spatial
autocorrelation of residuals with Moran’s I statistic, (2) test the significance of serial autocorrelation of residuals with
Durbin–Watson statistic, (3) choose a proper spatial correlation function structure (SCF).

First, Moran’s I is used to test the significance of spatial autocorrelation of the residuals. The test was developed by
(Moran 1950), and is defined as

I ¼ NP
i

P
j wij

P
i

P
j wijðZi � �ZÞðZj � �ZÞP

i ðZi � �ZÞ2 : (1)

where N denotes the number of sites (i, j), wij denotes the weight of each site, Z denotes the observation variable, and �Z
denotes the average of observations. Moran’s I ranges from –1 to 1, and larger positive values imply stronger positive
correlation, i.e. the closer in space, the more similar in observations. In addition, the p-value can help examine the
significance of autocorrelation. Among the 109 samples, 3 samples are randomly chosen for Moran’s I test, and it is
implemented with the ape package in R software, the results of which are shown in Table 1. Under the confidence level
of 95%, a significant spatial positive autocorrelation exists in all the three samples. Hence, strong spatial autocorrelation
exists and must be modelled.

Figure 2. (a) Positions of height sampling points; (b) The 3-D scatterplot of a real sample.

Figure 3. (a) A preview of the spatial pattern; (b) A preview of the temporal pattern.
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Second, the Durbin–Watson test is used to detect the presence of serial autocorrelation in the residuals from a
regression analysis (Durbin and Watson 1971). For panel data, they are generalised by (Bhargava, Franzini, and
Narendranathan 1982), which is defined as

d ¼
PN

i¼1

PT
t¼2 ðei;t � ei;t�1Þ2PN
i¼1

PT
t¼1 e

2
i;t

(2)

where ei,t denotes the residual after regression with fixed effects of K regressors, N denotes number of individuals in the
panel and T denotes time length. In our case, there is only one regressor, the quadratic univariate spatial term, and thus
K = 1. From the number of batches, T = 109. The DW statistic for our data is 1.75 computed from the formula above.
According to significance table, at level 0.05, for K = 1 and T = 109, the upper and lower critical values are (du, dl) =
(1.70, 1.67). Because d > du and (4 – d) > du, there is no statistical evidence that the errors are positively or negatively
autocorrelated. Hence, no serial autocorrelation exists, and the micro-scale variation can be safely modelled as a purely
spatial process. Thus, the structure of SCF ought to be decided.

Third, to choose a proper SCF structure, we start with explaining the mathematical relationship between the vari-
ogram and the SCF, and then compute the empirical variogram and fit the candidate variogram function family to the
empirical variogram; finally, we decide the SCF family.

Let Z(x) denote the residual at site x, let h denote the distance between two sites, let r2Z denote Var(Z(x)), let r(h)
denote the SCF and let 2γ(h) denote the variogram.

rðhÞ ¼ CorrðZðxþ hÞ; ZðxÞÞ ¼ CovðZðxþ hÞ; ZðxÞÞ
r2Z

¼ EðZðxþ hÞZðxÞÞ
r2Z

(3)

2cðhÞ ¼ E½ðZðxþ hÞ � ZðxÞÞ2� ¼ r2Zð2� 2rðhÞÞ (4)

From Equation (4), variogram and SCF are structured by the same function family. Empirical variograms were intro-
duced by Cressie and Cassie (1993), and in our case, for each time step, they are computed as

2cðhÞ ¼ 1

jNðhÞj
X

ði;jÞ2NðhÞ
jzi � zjj2; (5)

where xi denotes the ith site (i = 1, 2, … 17), N(h)denotes the set of pairs of observations (i, j) such that jxi � xjj ¼ h, |
N(h)| denotes the number of pairs in the set and zi denotes the residual at site xi.

The variograms of the three samples are presented in Figure 4. In each plot, the distance ranges from 0 to 1.6
because the sampling sites range from –0.8 to 0.8 in steps of 0.1. The variograms increases with the distance, which

Table 1. Statistical test for spatial autocorrelation.

Sample1 Sample2 Sample3

Moran’s I 0.30 0.29 0.28
p-value 9.14e-6 1.71e-5 2.33e-5
α = 0.05 Significant Significant Significant

Figure 4. Empirical variograms of residuals at three time steps.
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implies that the correlation decreases when the neighbours become further apart. The SCF family of spatial process is
chosen as follows.

There are many families of SCF: Matern, exponential, Gaussian, spherical, etc. The exponential and Gaussian fami-
lies are two commonly used examples of the Matern family. Here, we utilise the geoR package in R software to com-
pute an empirical variogram and fit it against one of the above families. The analysis of real data shows that the
Gaussian family is an appropriate choice for the variogram family as well as the SCF family in our case.

From the data analysis, three conclusions are reached. (1) The features of the macro-scale variation include a quadra-
tic trend along the space dimension and an empirical trend along the time dimension. (2) The micro-scale variation can
be structured as a spatial process because strong spatial autocorrelation exists but no significant serial autocorrelation
exists. (3) The SCF family is assumed as Gaussian, for simplicity, it is structured as follows

rðhÞ ¼ e�hh2 (6)

4. Modelling spatial–temporal variations

As mentioned previously, both regression models and dynamic statistical models are used for modelling macro-scale
variations, and the micro-scale variation component is modelled as a purely spatial process, as analysed in Section 3. In
all, three spatial–temporal models are proposed in this section, and the corresponding estimation methods will also be
given in detail.

The mind map of modelling is presented in Figure 5, and Table 2 gives a brief summary of the three proposed mod-
els. Each model is composed of a macro-scale variation and a micro-scale variation component. The micro-scale varia-
tion components in the three models are the same, modelled using a zero-mean Gaussian spatial process. The macro-
scale variation components are different. In Model 1, the macro-scale variation component is the sum of the spatial and
temporal trends, assuming the effects are separable and additive. From the conclusions of the data analysis, the quadratic
spatial trend is modelled using a polynomial regression, and the empirical temporal trend is modelled using regression
splines in Model 1A and by a locally weighted regression in Model 1B. In Model 2, the spatial–temporal trend is inte-
grated in a state-space model. The details of the modelling are introduced in this section.

Figure 5. The mind map of modelling strategy.

Table 2. A brief outline of the proposed models.

Contents of each model

Model 1A: Spatial trend (polynomial regression term) + Temporal trend (regression splines term) + Error in spatial process
Model 1B: Spatial trend (polynomial regression term) + Temporal trend (locally weighted regression) + Error in spatial process
Model 2: Spatial–temporal trend (state-space model) + Error in spatial process

6618 J. Tao et al.



4.1 Model 1

4.1.1 Modelling

Model 1 has two varieties, termed Model 1A and Model 1B. Both models are based on the assumption that the spatial
trend and the temporal trend are separable and additive. The difference in the models is the modelling method of the
empirical temporal trend. Regression splines are used in Model 1A, and locally weighted regression is used in Model
1B. Their commonality is introduced first, and the estimation method of each model is presented.

Model 1 is a two-level hierarchical model

Y ðs; tÞ ¼ lsðsÞ þ ltðtÞ þ ZðsÞ þ e (7)

lsðsÞ ¼
XM
m¼1

bsms
m (8)

Let s denote the sampling sites, let Ns denote the sampling size, let t denote the time steps, let T denote the number of
all the time steps and let Y denote the response variable height following a normal distribution. At the first level
(Equation (7)), the macro-variation is decomposed into a spatial trend term μs(s), a temporal trend term μt(t), a spatial
process term Z(s) and a white noise e�Nð0;r2e Þ. Z(s) satisfies the following condition: for any s, Z(s) follows a normal
distribution, and its expectation and covariance are as follows

EðZðsÞÞ ¼ 0

CovðZðsÞ; Zðsþ hÞÞ ¼ r2z rðhÞ; (9)

assuming r(h) is a Gaussian family correlation function, as in Equation (6). Thus, the covariance of Y is

CovðY Þ ¼ CovðZ þ eÞ ¼ CovðZÞ þ VarðeÞ ¼ r2z e
�hh2 þ r2e I (10)

For the second level, the spatial trend μs(s) is modelled via a polynomial regression of degree M, as in Equation (8), as
the global nature of polynomial regression suits the spatial trend observed from the data analysis.

4.1.1.1 Model 1A. At the second level of Model 1, the temporal trend μt(t) is modelled by a cubic B-spline regression
term with the intercept as in Equation (11), due to the empirical and local nature observed.

ltðtÞ ¼ bt0 þ
Xi¼Kþ3

i¼1

bti fiðtÞ (11)

The cubic B-spline term defines a special set of piecewise cubic basis functions centred at pre-chosen knots and is a lin-
ear combination of the (K + 3) basis functions and the intercept. K denotes the number of knots, fi(t) denotes the already
known cubic basis functions and bti denotes the coefficients before the basis functions. The basis functions are generated
as follows:

Bj;0ðtÞ ¼ 1 tj � t\tjþ1

0 otherwise

�
Bj;pðtÞ ¼ t�tj

tjþp�tj
Bj;p�1ðtÞ þ tjþpþ1�t

tjþpþ1�tjþ1
Bjþ1;p�1ðtÞ

; (12)

where j denotes the jth span, and p denotes the degree of the function B(.). For example, given knots (–1, 0, 1) (K
knots) and boundary knots (–2, 2), the knot vector will be (–2, –2, –2, –2, –1, 0, 1, 2, 2, 2, 2), forming 10 spans and Bj,0

where j = 1, 2, … 10. In the above Equation (12), also known as the Cox-de Boor recursion formula, Bj,3 can be com-
puted, where j = 1, 2, … , 7, and there are ðKþ3Þ cubic basis functions and the intercept. In Equation (11), fi(t) = Bj,3(t),
where i = j = 1, 2, … , K + 3.
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In summary, the number of parameters in Model 1A depends on the degree of the polynomial regression chosen and
the number of knots chosen, and there are (M + K + 7) parameters:

w ¼ fbs1 ; . . .; bsMbt0 ; bt1 ; . . .; btðKþ3Þ ; r
2
z ; h; r

2
e Þ

4.1.1.2 Model 1B. The modelling method of the temporal trend μt(t) is a locally weighted regression in Model 1B. The
purpose of the locally weighted regression is to smooth and extrapolate from the historical data. First, the temporal trend
history data must be obtained, which, for example, could be the mean of the observations over all spatial space at each
time step. In our case, the centre points of the symmetric line that we study are used to investigate the temporal trend.
Let pt denote the temporal trend observation at step t. The smoothing and extrapolation procedure details are described
as follows (Cleveland 1979).

Step 1: Define a span (in percentage) as neighbourhood size ratio of the obtained data. Set tr as the target point. For
each tq in the neighbourhood of tr,q = 1, 2, … , Nq, and denote the furthest distance of points in neighbourhood from
the target point as Δr. Define the weight function as

wqðtrÞ ¼ W jtq�tr j
Dr

� �
¼ 1� jtq�tr j

Dr

� �3� �3
jtq�tr j
Dr

\1
� �

Step 2: For each tr, compute the coefficients of the polynomial regression of degree D of ptr on tr, which is fitted by the

weighted least squares with weight wq(tr). Thus, b̂qd are the values that minimise
PNq

q¼1
wqðtrÞ ptr �

PD
d¼0

bqdt
d
q

� �
. Thus, at a

target point tr, p̂tr¼
PD
d¼0

b̂qdt
d
q .

Step 3: Let er ¼ ptr � p̂tr , and let mer denote the median of |er|. Define the robustness weights as

mr ¼ 1� er
mer

� �2� �2
.

Step 4: Compute a new p̂r for each tr by fitting a polynomial regression of degree D using weighted least squares
with weight νqwq(tq).

Step 5: Repeat Steps 3 and 4 until convergence or the maximum iterations are reached. The final p̂r is a robust
locally weighted regression fitted value.

Although the above procedure is complicated for the robustness of smoothing, the key idea is simply to weight
observations in the neighbourhood, with decreasing weights assigned to the further neighbours. For smoothing, the
observation at the target points is included in the neighbours and has the highest weight. For extrapolation, the observa-
tion at the target point cannot be obtained, and the observation at the point next to it has the highest weight.

Therefore, the smoothed temporal trend history data is regarded as μt(t). By removing it from the spatial–temporal
data, the problem remains in estimating the parameters of (μs(s) + ɛ) with the new data, which only account for the spa-
tial trend and the spatial process. In addition, the parameters for Model 1B are w ¼ fbs1 ; . . .; bsM ; r2z ; h; r2e Þ. Therefore,
the estimation solution of Model 1B is included in that of Model 1A, and thus only the estimation method of Model 1A
is discussed in the next section.

4.1.2 Parameter estimation

The first level of the model motivates us to split the parameter vector into two vectors

w1 ¼ fbs1 ; . . .; bsMbt0 ; bt1 ; . . .; btðKþ3Þg

w2 ¼ fr2z ; h; r2eg
Let

B ¼ s s2 . . . sM 1 f1ðtÞ f2ðtÞ . . . fKþ3ðtÞ
	 


:
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Because the number of sites is Ns, and the number of time steps is T, the dimension of matrix B is (NsT) × (M + K + 4).
Let

Rðw2Þ ¼ CovðY Þ;
then

Y �NðBw1; Rðw2ÞÞ:
The log likelihood function is

logLðY jwÞ ¼ � n

2
logð2pÞ � 1

2
logð Rðw2Þk k � 1

2
ðY � Bw1Þ0Rðw2Þ�1ðY � Bw1Þ:

The algorithm combines the general procedure introduced by Fang, Li, and Sudjianto (2005) and some modifications
recommended by Mardia and Marshall (1984), and the primary idea is to iteratively update the values of ŵ1 and ŵ2.

Step 1: Give the initial parameter ŵ2.
Step 2: Update ŵ1.
According to the generalised least square estimator,

w1 ¼ ðB0R�1ðw2ÞBÞ�1B0R�1ðw2ÞY
Step 3: Update ŵ2.
Mardia and Marshall (1984) suggested using the one-step Fisher scoring algorithm to update the value of ψ2.

ŵ0
2 ¼ ŵ2 þ I�1

2 ðŵÞV2ðY : ŵÞ
V2ðY ; ŵÞ is the score function with respect to ŵ2:

V2ðY : ŵÞ ¼ � 1
2

@
@ŵ2

log Rðŵ2Þ
��� ���� 1

2 ðY � Bŵ1Þ0 @
@ŵ2

R�1ðŵ2ÞðY � Bŵ1Þ
@

@ŵðkÞ
2

log Rðŵ2Þ
��� ��� ¼Pm

j¼1

Pm
i¼1

ðR�1ðŵ2ÞÞi;j @

@ŵðkÞ
2

Rðŵ2Þ
� �

i;j

@

@ŵðkÞ
2

R�1ðŵ2Þ ¼ R�1ðŵ2Þ @

@ŵðkÞ
2

Rðŵ2Þ
� �

R�1ðŵ2Þ

where ŵðkÞ
2 is the kth parameter in w2 ¼ fr2z ; h; r2eg.

I2(ψ) is the Fisher information matrix with respect to ψ2. It has been proven that

IðwÞ ¼ I1ðwÞ 0
0 I2ðwÞ

� �
;

where

I1 wð Þ ¼ Y 0R�1 w2ð ÞY ;
and the (i, j)th element of I2(ψ) is

½I2ðwÞ�i;j ¼
1

2
tr Rðw2Þ�1 @

@wðiÞ
2

Rðw2ÞR�1ðw2Þ
@

@wðjÞ
2

Rðw2Þ
 !

Step 4: Run Step 2 and Step 3 until convergence.

4.2 Model 2

4.2.1 Modelling

Model 2 is a three-level hierarchical model; the main part is a state-space equation for the macro-scale variations.

Y ðs; tÞ ¼ lðs; tÞ þ ZðsÞ þ e (13)
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lðs; tÞ ¼ SðsÞgt (14)

gtþ1 ¼ Ggt þ sþ d (15)

The role of the first level of Model 2 (Equation (13)) is equivalent to that in Model 1. For the second level (Equation
(14)), the macro-scale variation component is modelled as the product of a time-variant state vector ηt and a loading
matrix S(s). The loading matrix S(s) is a combination of the spatial basis functions. Moreover, the mean and variance of
η0 are denoted as mg0 and Rg0 , respectively. The third level of Model 2 (Equation (15)) is a latent temporal process of
state ηt: AR(1) with a transition matrix G and an intercept τ. δ is white noise that follows the distribution N(0, Σδ).

The error e(s) = Z(s) + ɛ has a zero-mean Gaussian distribution with covariance matrix as given by Equation (10).
For the convenience of the estimation, the covariance matrix is represented as Re ¼ r2zCðhÞ. Γ is the following scaled
spatial covariance function

C1;hðhÞ ¼ 1þ 1 h ¼ 0
rðhÞ h[ 0

�
(16)

where 1¼ r2e
r2z

and r(h) follow Equation (6). For positive definiteness reasons, it is preferable to estimate log (1) instead of
r2e .

In summary, the parameters in Model 2 are

w ¼ fmg0 ;Rg0 ;G; s;Rd; r
2
z ; h; logð1ÞÞ

4.2.2 Parameter estimation

We here propose to estimate Model 2 using an EM algorithm that is also embedded with an NR algorithm. The model
is modified based on the estimation algorithms proposed by Fasso and Cameletti (2010), and some iteration equations
are developed by utilising the work of Deng and Shen (1997) in our model. The estimation algorithm is implemented
by modifying the Stem package developed by Michela Cameletti in R software.

We assume having the complete data of both the latent process ηi and the response variable Yi, where i = 1, 2, … ,
T. T denotes the number of time steps. Let D = {η, Y} denote the complete data, and then the complete log-likelihood is
given by

log LðDÞ / � T
2 log jRej � 1

2

PT
t¼1

ðYt � ltÞR�1
e ðYt � ltÞ0

� 1
2 log jRg0 j � 1

2 ðg0 � mg0ÞR�1
g0
ðg0 � mg0Þ0

� T
2 log jRdj � 1

2

PT
t¼1

ðgt � Ggt�1 � sÞR�1
g ðgt � Ggt�1 � sÞ0

: (17)

The EM algorithm consists of an E and an M step. The E step computes the conditional expectation of the complete
log-likelihood function log L(D) on the observation matrix Y, and the updated ψ is given by maximising E½logLðDÞjY �
at the M step.

4.2.2.1 E step. The conditional expectation of the log-likelihood function is computed as follows:

�2QðDÞ ¼ �2E½log LðDÞjY �

¼ T log jRej þ trfR�1
e

PT
t¼1

½ðYt � SgTt ÞðYt � SgTt Þ0 þ SPT
t S

0�

þ log jRg0 j þ trfR�1
g0
½ðg0 � mg0Þðg0 � mg0Þ0 þ PT

0 �g
þT log jRdj þ trfR�1

d ½S�11 � S�10G
0 � GS�10 þ GS�00G

0�g

(18)
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where

S�00 ¼
PT

t¼1
ðgTt�1g

T 0
t�1þPT

t�1Þ
T

S�10 ¼
PT

t¼1
½ðgTt �sÞgT 0t�1þPT

t;t�1�
T

S�11 ¼
PT

t¼1
½ðgTt �sÞðgTt �sÞ0þPT

t �
T

; (19)

and gt
0
t ¼ EðgtjYt0 Þ, Pt0

t1;t2
¼ Efðgt1 � gt

0
t1
Þðgt2 � gt

0
t2
Þ0g, Pt0

t ¼ Pt0
t;t. Plus, g

0
1 ¼ mg0 , P

0
1 ¼ Rg0 . And PT

t;t�1, g
T
t , P

T
t are com-

puted using the Kalman smoother with the kth iteration of parameters ψ(k) as the true value. The computation details,
except the Kalman smoother, are described in Appendix 1. For details of the Kalman smoother, refer to Shumway and
Stoffer (2010).

4.2.2.2 M step. The parameters are updated as follows, and the computation details are presented in Appendix 2.

G sð Þ ¼ S10 1
T

PT
t¼1

gTt

� �
S00 1

T

PT
t¼1

gTt�1

1
T

PT
t¼1 g

T 0
t�1 1

0
B@

1
CA

�1

Rd ¼ S11 � G sð Þ S10

PT

t¼1
gTt

T

� �0 ; (20)

where

S00 ¼
PT

t¼1
ðgTt�1g

T 0
t�1þPT

t�1Þ
T

S10 ¼
PT

t¼1
ðgTt gT

0
t�1þPT

t;t�1Þ
T

S11 ¼
PT

t¼1
ðgTt gT

0
t þPT

t Þ
T

(21)

According to the conditional maximisation approach (McLachlan and Krishnan 2007), the solution of @Qðw;wðkÞÞ
@w ¼ 0 is

approximated by partitioning ψ = {ψ1, ψ2}. w1 ¼ fmg0 ;G;Rd; r2zg. Holding w2 ¼ fRg0 ; h; logð1Þg constant, the (k + 1)th
iterations of mg0 and r2z are given by

mðkþ1Þ
g0 ¼ gT0

ðr2z Þðkþ1Þ ¼ ðr2z ÞðkÞ
Tn trðR�1

e W Þ
,

where

W ¼
XT
t¼1

½ðYt � SgTt ÞðYt � SgTt Þ0 þ SPT
t S

0� (22)

At the kth iteration of the EM algorithm, ψ1 is updated to wðkÞ
1 according to the algorithm above. Because there are no

closed forms for the remaining parameters, w2 ¼ fRg0 ; h; logð1Þg, the NR algorithm is used for minimising

Q1ðw2Þ ¼ T log jRej þ trfR�1
e Wg

The updating formula for the ith iteration of the inner NR algorithm is given by

wðiþ1Þ
2 ¼ wðiÞ

2 � H�1
w2¼wðiÞ

2

� D
w2¼wðiÞ

2
;

where H and Δ are the Hessian matrix and the gradient vector of Q1(ψ2), respectively. The update step repeats until the
NR algorithm converges, and then the wðkÞ

2 and the complete ψ(k) are obtained. The details of the NR algorithm are
reported in Appendix 3.

The E and M steps are repeated until the EM algorithm converges, and final parameter estimates of ŵ are obtained.
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4.2.3 Prediction

The prediction of the height at the sampling sites at next time step is based on Kalman-filtered data,
gtt; P

t
tðt ¼ 1; 2; . . .; TÞ, which was previously obtained during the estimation.

gtt ¼ EðgtjYtÞ
Pt
t ¼ Efðgt � gt

0
t Þðgt � gt

0
t Þ0g

The prediction of the latent process can be computed as follows:

gTTþ1 ¼ ĜgTTþŝ
PT
Tþ1 ¼ ĜPT

T Ĝ
0 þ R̂d

Thus, the prediction of the response variable is YTþ1 ¼ SgTTþ1. For details of the Kalman filter, refer to Shumway and
Stoffer (2010).

5. Case study

In this section, the three models introduced above, with their specific formats that are applicable to the real data-set, are
also described here. The performances of these models are evaluated based on both goodness of fit and prediction
accuracy.

5.1 Model specifications

Based on the generalised models presented in Section 4 and the conclusions of the data analysis in Section 3, Model
1A, Model 1B and Model 2 are considered in this section. The specifications correspond to the macro-scale variation
component of each model.

5.1.1 Model 1

The spatial trend is quadratic and symmetric, as observed in data preview, and thus, the spatial trend term in both Model
1A and Model 1B is

lsðsÞ ¼ s2

To decide the specifications of the trend component in Model 1A, the following three components are critical: the
spline function (i.e. cubic B-spline or natural cubic B-spline), the degree of freedom and the position of knots chosen.
Here we explain how these components are determined.

First, consider the difference between natural and cubic splines. The Natural cubic B-spline differs from the cubic
B-spline by a linear limit near boundaries and leads to greater stability near or beyond the boundaries. Holding their
degrees of freedom and knot positions the same, Figure 6(a) and (b) shows that the greatest difference appears around
the boundaries (–60, 60); the natural cubic B-spline function is linear out of boundaries while cubic B-spline function
can deviate far away. Thus, when predicting with cubic B-spline, the prediction site must be within the boundaries, and
natural cubic B-spline is more conservative as for the boundary concern.

Second, consider the degrees of freedom (df). In our case, with the natural cubic B-spline and evenly distributed
knot positions, Figure 6(a) and (c) plot the basis functions when df is set as three and five. Figure 6(e) plots the fitted
temporal trend of centre height, and the comparison shows that the fitting performance is better when the degree of free-
dom is 5 than that when it is 3. When the degree of freedom becomes higher, the fitted line will generally be curlier.

Third, consider the knot positions. Appropriately chosen knot position will help to reach a better fitness. The default
choice is evenly distributed between the boundaries, while in our case the knot positions are chosen as those where
observation fluctuates greatly (i.e. (5, 50, 70, 80, 100)). Figure 6 shows that the latter choice leads to better fitness
where the fluctuations are (but please note that it may not lead to improved prediction).

Therefore, the temporal term in Model 1A is modelled using the natural cubic B-spline, with the degree of freedom
set to five. When computing the natural cubic B-spline basis function evaluated at each time step (e.g. t = 1, 2, … ,
109), the predictor input should better be symmetric (e.g. t = –54, … , 54). The boundary knots are set as (–60, 60),
with the knots evenly distributed for better prediction performance.
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(a) Natural cubic B-spline, df=5, knot evenly
 distributed  

(b)Cubic B-spline, df=5, knot evenly  distributed 

(c) Natural cubic B-spline, df=3, knot evenly
     distributed 

(d) Cubic B-spline, df=3, knot at fluctuations 

(e) A comparison of model fitness under different degrees of freedom

(f) A comparison of model fitness under different knot positions

Figure 6. Comparison of choices of spline functions, degrees of freedom and knot positions.
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The temporal term in Model 1B is modelled based on a locally weighed regression involving a degree of inner poly-
nomial regression and a span percentage, as mentioned in Section 4.1.1 Model 1B. Here, the degree is set as 1, and the
span is set as 0.6 via trial and error.

For Model 2, the spatial and temporal trends are integrated. The loading matrix and the state vector are defined as

gt ¼ at ctð Þ0
SðsÞ ¼ s2 1

	 
 ;
where the convexity at and the position ct of a quadratic symmetric curve are exacted as features in the state vector ηt.
Assuming no independent changing pattern of at and ct, the transition matrix G is a time-invariant diagonal matrix diag
(Ga, Gc) and the covariance matrix of states is Rd ¼ diagðr2da; r2dcÞ. The independence assumption is feasible for our
problem. From the chemical and physical knowledge of CNT growth, the degree of convexity (at) depends on the inter-
nal distribution of the catalyst that costs the film on the substrates, whereas the general position (ct) relies on external
environment variables, such as temperature and gas volume. Loaded with S(s), the macro-scale variation component
μ(s; t) = S(s)ηt embodies a time-variant quadric symmetric curve.

5.2 Estimation result and performance comparison

All of the estimation algorithms are implemented using R software. The parameters of the three models and a base
model are shown in Table 3. In addition, the performances are compared based on the goodness of fit and the prediction
accuracy.

To show the effectiveness of our models, simple exponential smoothing is chosen as a base model without consider-
ation of the hierarchical nature of the spatial–temporal variation. At each location is a time series of 109 steps. All of
the time series are smoothened with the same parameter, α, which can also be viewed as smoothing a vector,
Yt ¼ ðYs1 ; Ys2 ; . . .; YsNs Þ, with parameter α, as follows:

Ŷ1 ¼ Y1
Ŷtþ1 ¼ aYt þ ð1� aÞŶt

The smoothed data of the 109 steps are used to evaluate the goodness of fit, and the smoothed data of the last 59 steps
are used to evaluation the accuracy of the prediction. In our case, α = 0.9 for the best goodness of fit.

The performance evaluation is based on two factors: the goodness of fit and the prediction accuracy. For both fac-
tors, two popular measures are used: the residual sum of squares (RSS) and the mean absolute percentage error
(MAPE).

RSS ¼PT
t¼1

PNs

s¼1
ðY � Ŷ Þ2

MAPE ¼ 1
NST

PT
t¼1

PNs

s¼1

jY�Ŷ j
Y

Table 3. Parameter estimates.

Model 1A
β0 βs βt r2e r2z θ
0.225 0.037 (0.052,0.028, −0.019,0.171,0.128) 7.75e-4 2.48e-6 0.062

Model 1B

βs r2e r2z θ
0.038 4.45e-4 3.23e-6 0.7

Model 2

G τ Σδ r2e r2z θ
diag(0.579,0.512) diag(0.017,0.139) diag(4.77e-6, 3.82e-4) 2.3e-4 4.5e-6 6.59e-3
mg0 Rg0
(–0.012,0.163) diag(1e-6,1e-6)
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Table 4 summarises the performance of the proposed models and the base model. The prediction accuracy is based
on one-step-ahead predictions and a total of 59 predictions. Model 2 performs the best both for goodness of fit and pre-
diction, and Model 1B provides a good fit but poor prediction. The performance of Model 1A does not exceed the base
model regarding either factor. The analyses of their performances are as follows.

Table 4. Goodness of fit and prediction accuracy of the models.

Fit (109 steps) Prediction (59 steps: one step ahead)

RSS MAPE (%) RSS MAPE (%)

Exp smoothing 1.635 7.08 1.428 9.35
Model 1A 1.439 7.81 1.533 12.07
Model 1B 0.829 5.78 1.503 11.40
Model 2 0.021 0.97 1.244 9.30
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Figure 7. Predictions of the temporal trend.
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It is seen from Table 4 that Model 2 fits best because the temporal trend fits the latent process very well, and there
is an error adjustment scheme in each iteration of the Kalman filter and the smoother. Model 1B fits better than Model
1A due to the local nature resulting from the locally weighted regression, and thus the trend fitted by Model 1A is
smoother than Model 1B. If the degree of freedom of the regression splines chosen in Model 1A is higher, the curve
fluctuates more globally.

Next, we compare the three proposed models in terms of their prediction accuracy. It should be noted that Model
1B only performs a one-step-ahead prediction, whereas the other two models are capable of multiple-step-ahead predic-
tion. The prediction accuracy primarily depends on the prediction of the temporal trend (i.e. the prediction of height at
the centre point). Figure 7 compares the temporal prediction trends of each model. The more global nature of Model 1A
results in a smooth prediction and thus, unsatisfactory prediction accuracy. The base model, Model 1B and Model 2 pre-
dictions all exhibit a lag effect, and there are two primary differences, as follows. (1) Model 1B cannot quickly recover
from an outlier and return to normal levels due to the regression nature, such as the predictions at the steps 70–80. (2)
Due to the transition scheme of the latent process in Model 2, the general position the curve quickly recovers to normal,
and the fitted value on which the prediction depends is very accurate in Model 2.

6. Conclusions

CNTs possess great physical and thermal properties and are produced using low-cost materials but via a delicate proce-
dure. Hence, the large-scale production of CNT arrays with stable quality holds great commercial value. Current prob-
lems are that (1) the height of a CNT array is concave within the piece, which interrupts the continuousness when
drawing CNT film or yarns, and (2) the height lacks uniformity among samples of different batches. To describe the
height variations within and among samples, three spatial–temporal models are proposed, and their performances are
evaluated based on CNTs.

The models proposed in Section 4 are generalised and can be applied to other spatial–temporal modelling problems.
As summarised in Table 2, the three models can all be decomposed into macro-scale variation and micro-scale variation
components. The micro-variation component is modelled as a spatial process. For the macro-scale variation, Models 1A
and 1B assume separable and additive spatial and temporal trends, with the spatial trend modelled as polynomial regres-
sion term in both models, and the temporal trend modelled as a regression splines term in Model 1A and as a locally
weighted regression term in Model 1B. The macro-variation in Model 2 is modelled as a state-space model, integrating
both spatial and temporal trends. The estimation algorithms for each model are also presented in detail, which are pri-
marily the combination of EM and NR algorithms.

Based on the specifications of the model components, the models are applied and evaluated for goodness of fit and
prediction accuracy. A base model of exponential smoothing is added to the comparison to provide a more complete
evaluation. Table 5 summarises the advantages and disadvantages of each model to provide some clues for choosing
spatial–temporal models. Models 1A and 1B are regression models and are thus smoother than Model 2. Regarding the
local nature, Model 1B responds more rapidly and greatly to changes compared to Model 1A. Model 2 describes the
trend more delicately than Model 1B due to the error fix step in the Kalman filter and the smoother, and the transition
scheme allows for a quicker recovery from outliers compared to Model 1B. The degree of freedom of the three models
(the number of parameters required to estimate) is generally ordered as Model 2 > Model 1A > Model 1B, although the
degree of freedom also depends on the degree of regression or model structure that is chosen. Model 2 is more widely
applicable than the other two models because the modelling of the macro-scale variation allows for a time-variant spatial
pattern. That is, in our case, the convexity of the curve can change with time. Regarding the computation, unlike other
two models, the estimation of Model 1B is not integrated due to the limitation of the model structure of the temporal

Table 5. Advantages and disadvantages of the proposed models.

Advantage Disadvantage

Model 1A Smooth in prediction; can provide multi-step-ahead prediction Ignorant of local features and time-variant spatial
patterns; unsatisfactory fitness and prediction
performance

Model 1B Good fitness performance, flexible in capturing local features Ignorant of time-variant spatial patterns; can only
provide one-step-ahead prediction

Model 2 Great fitness and prediction performance; consideration of time-
variant spatial patterns; can provide multi-step-ahead prediction

Number of parameters to be estimated is large
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trend, and the temporal trend must be estimated first and then the spatial part. Regarding functionality of prediction,
Model 1A and Model 2 can make multi-step-ahead predictions, whereas Model 1B is only capable of one-step-ahead
prediction.

In conclusion, Model 2 (state-space model) performs the best for CNT spatial–temporal height modelling, and can
also be applied to many other spatial–temporal data. Moreover, though only the centre line of the height surface is used
in modelling for simplicity, as mentioned in Section 3.1, the fits or prediction can be extended to location-dependent
heights other than centre-line heights by spinning the centre line height around and obtaining the whole surface. In addi-
tion, this paper modified the existing state-space model for spatial–temporal data by adding a intercept in the AR(1) pro-
cess expressed by Equation (15), and correspondingly modified the existing algorithm of parameter estimation with
detailed steps and proof in Appendices 1 and 2. The modification extends the original model proposed by Fasso and
Cameletti (2010), and allows more flexibility and wider application of the state-space model. Finally, the paper applied
some common existing models (spline regression, locally weighted regression) to compare the fitting and prediction per-
formance in the CNT case, and hopefully it will provided some hints for readers facing similar spatial–temporal prob-
lems.

The main focus of this paper is modelling variation patterns of CNT arrays, thus providing researchers and practi-
tioners a better understanding of the process. In practice, more important questions that exist in this process are still left
untouched. For example, given a process that is characterized by the spatial-temporal models studied above, how to
adjust process inputs so that its output has minimised variation. As another example, after a good understanding of the
natural variation the profiles, how to detect abnormal process changes through an implementation of control charts. All
these questions are interesting topics that deserve future research efforts.
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Appendix 1. E step computation in the estimation method of Model 2
The computation details of the E step of the EM algorithm for estimating Model 2 are outlines below, including the derivation of
Equation (18) from Equation (17). In the study of Fasso and Cameletti (2010), there exists a similar conditional expectation of the
log-likelihood function. However, our model is extended by adding an intercept term in the temporal process of the state (Equation
(15)), and the computation must be modified accordingly.

�2QðDÞ ¼ �2E½log LðDÞjY � ¼ Q1ðDÞ þ Q2ðDÞ þ Q3ðDÞ
Q1 ¼ T log jRej þ E

PT
t¼1

ðYt � ltÞR�1
e ðYt � ltÞ0jY

� �

¼ T log jRej þ tr R�1
e

PT
t¼1

E½ðYt � ltÞðYt � ltÞ0jY �
� �

¼ T log jRej þ tr R�1
e

PT
t¼1

½ðYt � SgTt ÞðYt � SgTt Þ0 þ SPT
t S

0�
� �

(23)

The first equivalence in Equation (23) is based on aVa′ = tr(Vaa′), and the second is based on Var(X) = E[(X – E(X))(X – E(X))′] = E
(XX′) – (E(X))E(X)′. Here we provide additional details of the second equivalence. By replacing X with Yt – μt, we obtain

EððYt � ltÞðYt � ltÞ0jY Þ
¼ E½ðYt � ltÞjY �E½ðYt � ltÞjY �0 þ E½ðYt � ltÞ � EðYt � ltÞÞðYt � lt � EðYt � ltÞÞ0jY �
¼ ðYt � SgTt ÞðYt � SgTt Þ0 þ VarðZtjY Þ
¼ ðYt � SgTt ÞðYt � SgTt Þ0 þ SPT

t S
0

:

Similar to Q1,

Q2 ¼ log jRg0 j þ E½ðg0 � mg0ÞR�1
g0
ðg0 � mg0 Þ0jY �

¼ log jRg0 j þ trfR�1
g0
½ðg0 � mg0Þðg0 � mg0Þ0 þ PT

0 �g
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Q3 ¼ T log jRdj þ E
PT
t¼1

ðgt � Ggt�1 � sÞR�1
d ðgt � Ggt�1 � sÞ0jY

� �

¼ T log jRdj þ tr R�1
d

PT
t¼1

E½ðgt � Ggt�1 � sÞðgt � Ggt�1 � sÞ0jY �
� �

In addition,

E½ðgt � Ggt�1 � sÞðgt � Ggt�1 � sÞ0jY �
¼ ðgTt � GgTt�1 � sÞðgTt � GgTt�1 � sÞ0 þ E½ðgt � Ggt�1 � gTt þ GgTt�1Þðgt � Ggt�1 � gTt þ GgTt�1Þ0jY �
¼ gTt g

T 0
t � GgTt�1g

T 0
t � sgT

0
t � gTt g

T 0
t�1G

0 þ GgTt�1g
T 0
t�1G

0 þ sgT
0

t�1G
0 � gTt s

0 þ GgTt�1s
0 þ ss0

þPT
t � GPT 0

t;t�1 � PT
t;t�1G

0 þ GPT
t�1G

0

¼ S�11 � S�10G
0 � GS�10 þ GS�00G

0

;

where S�11; S
�
10; S

�
00 are defined as Equation (19).

Therefore, Equation (18) is obtained.

Appendix 2. M step computation in the estimation method of Model 2
The development of the updating Equations (20) is based on Deng and Shen (1997)’s study. They proposed a generalised EM algo-
rithm to estimate a state-space model, which is equivalent to the macro-scale variation component of our Model 2.

G sð Þ ¼ PT
t¼1

Eðgtg0t�1jY Þ
PT
t¼1

Eðgt jY Þ
� � PT

t¼1
Eðgt�1g

0
t�1jY Þ

PT
t¼1

Eðgt�1jY Þ
PT
t¼1

Eðg0t�1jY Þ T

0
BB@

1
CCA

�1

¼ PT
t¼1

ðgTt gT
0

t�1 þ PT
t;t�1Þ

PT
t¼1

gTt

� � PT
t¼1

ðgTt�1g
T 0
t�1 þ PT

t�1Þ
PT
t¼1

gTt�1

PT
t¼1

gT
0

t�1 T

0
BB@

1
CCA

�1

¼ S10 1
T

PT
t¼1

gTt

� � S00 1
T

PT
t¼1

gTt�1

1
T

PT
t¼1

gTt�10 1

0
BB@

1
CCA

�1

;

Rd ¼ 1
T

PT
t¼1

Eðgtg0tjY Þ � G sð Þ 1
T

PT
t¼1

Eðgtg0t�1jY Þ 1
T

PT
t¼1

Eðgt jY Þ
� �0

¼ S11 � G sð Þ S10
PT
t¼1

gTt

� �0 ;

where S11; S10; S00 are defined as Equation (21).

Appendix 3. NR iteration in the estimation method of Model 2
The details of the NR algorithm are equivalent to those reported in Fasso and Cameletti (2010)’s study, except that the correlation
function r(h) in the micro-scale variation component in our Model 2 is Gaussian instead of exponential.

Let w2ðjÞ for Rg0 ( j = 1), θ ( j = 2), and log (1) ( j = 3). From the standard matrix differential rules (Harville 1997; Wand 2002),

@Q1

@w2
¼ Ttr C�1 @C

@w2

� �
� 1

r2z
tr C�1 @C

@w2
C�1W

� �
;

where W follows Equation (22). In addition,

@C
@h ¼ ½1� I0ðhÞ� � @rðhÞ

@h
@C

@ logð1Þ ¼ I0ðhÞ � exp½logð1Þ� ;
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where I0(h) is an indicator function returning 1 for h = 0 and 0 elsewhere. For the second-order derivative,

@2Q1

@w2ð iÞ@w
0
2ð iÞ

¼ Ttr C�1 @2C
@w2ð iÞ@w

0
2ð iÞ

� �
� Ttr C�1 @C

@w2ð iÞ
C�1 @C

@w2ð iÞ

� �

� 1
r2z
tr C�1 @2C

@2w2ð iÞ
C�1W

� �
� 2

r2z
tr C�1 @C

@w2ð iÞ
C�1 @C

@w2ð iÞ
C�1W

� � :

Furthermore,

@2C

@h@h0
¼ ½1� I0ðhÞ� � @2rðhÞ

@h@h0
;

For log (1), it holds that @2C
@2 logð1Þ ¼ @C

@ logð1Þ. Finally, considering that @2C
@ logð1Þ@h is a null matrix, the second-order mixed derivative is

@2Q1

@h@ logð1Þ ¼ �Ttr C�1 @C
@h

C�1 @C
@ logð1Þ

� �
þ 2

r2z
tr C�1 @C

@h
C�1 @C

@ logð1ÞC
�1W

� �

The first-order and second-order derivative of Γ respect to θ depends on the form of r(h) (exponential, Gaussian, etc.)
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